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1. INTRODUCTION

For the past ten years, a group of rescarchers--mathematicians and theoretical engineers,
centered at, and partially supported by, the Flight Control group at NASA-AMES-~have attempted
to push beyond what was done in the 1960's for linear control theory, and develop effective
metnods for controlling systems whose dynamical equations are fundamentally nonlinear. Our
applied focus has been the practical problems encountered in designing aircraft and helicop-
ters, but our methodology--~based as it is on fundamental mathematical principles-~is adapt-
able to robotic systems.

Conversely, we hope that use of the new ideas under development in the computer science
and AI community will help us use computer technology in a more effective way to handle types
of control problems--particularly of a "discrete event” nature~~that have been difficult to
include in a differential-equations based methodology.

Taking a historical view of progress in engineering and engineering-related mathematics,
the situation becomes clarified. The breakthroughs of the 1960's in control theory were
closely linked to the development of computers, which could solve differential equations very
efficiently. Mathematically, assumptions on linearity worked well because of the nature of
the engineering problems that needed to be solved, especially in the Apollo Program, where
the space craft could be treated satisfactorily as point particles, or at worst as rigid
bodies. 1In the 1970's we attempted to adapt the mathematical techniques developed in the
1960's to the more difficult problems of control of aircraft and helicopters in circumstances
where the assumptions of linearity of the dynamics could no longer be realistically justified.
Recently, there has been a change in computer technology--such as LISP logic-based symbolic
computation and greatly increased potentialities for parallelism--that has not yet been fully
integrated into the main body of ccntrol theory. Further, computer science has achieved
greater maturity and substance, and I believe that there are great scientific and technological
possibilities in combining the talents and insights in the two communities. What control
theory nas to offer is a mature, mathematically based overview of a certain class of engineer-
ing problems, based on concepts of differential equations and dynamics, while the youthful
vigor of the computer science discipline is generating a lot of energy, but exhibiting the
need (in my opinion, at least) for more scientific and mathematical direction.

For the past two years, I have been trying~--with George Meyer's advice and support on the
engineering questions--to push in two directions. First, to understand how the control
tecaniques of feedback linearization--~developed as a useful control algorithm by Hunt, Meyer
and Su at NASA-AMES ([1,2]--can be integrated into the mainstream of differential geometry and
extended in the direction of understanding the relation between global! and local feedback
linearization. Second, I have tried to familiarize myself with the LISP and logic-based
computer technology and algorithms, and help in the job of introducing it into control theory.
o Since tiae first part of this program is further along--a major mathematical paper is now

completed [3) and awaits publication--I will Jescribe some of the ideas it contains Here, and
leave my ideas about developing relations between computer science and control theory to
another occasion.

2. A VIEW OF FEEDBACK CONTROL IN THE CONTEXT OF DIFFERENTIAL EQUATIONS, DIFFERENTIAL GECMETRY,
AND LIE THEQRY

A feedback coantrol system can be taken as an underdetermined system of ordinary differen-
tial equations of the following general form:

f(x, %’E"“) - 0 (2.1)
x € Rn; u € R"
f is a map: R2n+m + RP
53 Jordan Road, Brookline, MA 02146 ‘
*Tnis work was begun while the author was a National Resed. © Ccuncil Senior Research
. Associate at the Ames Research Centey, and continued under grant #NAG2406.
2] 299

nﬁgﬂ&mm W Mgy




*x* is a vector of R' describing components of the system (aircraft, helicopter, spacecraft,
robot,...) that are fixed in value, such as velocities, positions, angular or linear momenta,
otci “u”" are the control variables, which we must choose in some way to achieve a prescribed
qo‘ *

Feedback control can be described as follows. A feedback map or law is a map
X +P(x) = u (2.2)
o-+g"

from an open subget O of R" to the control space R®. a trajectory of the feedback
control law (2,.2) is a curve

t + x(t) ' (2.3)
in R" that satisfies the following ordinary differential equation:

t(xie), Forxeen) = o (2.4)

In engineering practice, we will want to choose the feedback law (2.2), so that the
family of trajectories defined by (2.3) and (2.4) will have certain stability, robustness, and
design properties. (For example, for the latter one might want the trajectory (2.3) to start
off at time t = 0 at a point xgp and end up exactly or approximately at a point x; at t=t.)
Stabilisation is the property that is best understood mathematically, hence I will use it as
a toucnstone here.

Much of the work in control theory of the 1960's--which was very successful on both the
mathematical and practical fronts--was oriented toward linear control systems, i.e., those of
tne form:

g%-Ax-Bu-O (2.5)

where A and B are constant matrices of appropriate size. Here, it is natural to require
that the feedback (2.l1) preserve this linearity. This can be accumplished by specifying that
the feedback map (2.2) be of the following form:

u = Kx (2.6)

where K is an mxn real matrix, The trajectory equations (2.2) are then of the following
form:

g-’é = (A +BK) (2.7

One may then require that these trajectories have a prescribed degree of stability. Because
{2.7) is a system of differential equations that can be handled with well-kxnown mathematical
tecnniques, we know that this behavior can be specified by imposing conditions on the eigen-
values of the nxn matrix

A + BK (2.8)

In turn, this "pole-placement” problem can be handled with well-known mathematical techniques
(matrix Riccati equations or Kronecker pencil theory) that were applied in the 1360's, but that
of course go back many years in the mathematical literature.

It is especially interesting that the useful sufficient conditions for stabilization of
(2.5) via linear feedback (2.6), i.e., "pole-placement" in the engineering jargon, involve
controllability of the control system (2.5)and is a mathematical concept that is--as I showgd
many years ago {(4]--essentially differential-geomeétric and Lie-theoretic in nature. Thus, it
should be no surprise that the problem of stabilization and feedback control of a more general
nonlinear system of type (2.1) also involves differential geometry and Lie theory.

Indeed, the work of Hunt, Meyer, and Su [1,2]) (preceeded by work of Krener [S], Brockett
[6), Sommer (7], Jakubzyx and Respondek [8])) demonstrate this in a decisive way. T@eir work
only dealt with feedback control of a certain class of systems (the fsedback l?ngartzaklc
ones, with the functions f( , , ) occurring in (2.1) satisfying certain conditions) if the
trajectory stayed within a small neighborhood R®, whose size could not be spegxfxed in
advance. This posed the question of finding conditions for global feedback equivalence.
There has been important partial work on this problem by Boothby, Dayawansa, and Elliot {[9-11]
using the tools of differential topology and foliation theory. In my paper (3] I have begun
to develop ways of applying the Ehresmann-Haefliger ([12] theory of pseudogroup cohomology to
this problem, but there is a long way to go before the results that are useful in practical
situations will come forth.
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The mathematical heart of the methods I have developed in [3] is the theory of vector
field systems (or distributions) on a manifold and their equivalence. I will now sketch some "

- of this basic differential-geometric theory, then return to the control situation.

3. VEéTOR FIELD SYSTEMS AND FEEDBACK EQUIVALENCE

I will now use the formalism "calculus on manifolds,” particularly the theory of vector
fields (i.e., first-order linear partial differential operators) and the Jacobi-Lie bracket
[ ]} (i.e., commutator) of such vector fields. See Isidori's book (13] for an engineer's
introduction to these concepts. ‘

Let £ be a manifold, with V(2Z) the space of vector fields. In terms of coordinates

;zi) for Z, 1<i,Jj<N=2adim2, a VEV(Z) is a differential operator of the following
orms \
\
\

v = al) 2o (3.1)

9z

(summation convention in force)

1t
V' o= aia—-f ' (3.2)
3z
then
¢ 38’ i aaj)a
(v,v'] = (A AR - g (3.3)
2z 2zt ] 323

Let F{Z) be the ring of C~, real-valued functions on 3. V(Z) is a module over
F(2), since vector fields can be multiplied by functions:

i3 |
(£,v) » ea* 1o (3.4) |
2

Definition. A veotor field system W on 2 is a subspace of V(Z) satisfying the follow-
ng condition:

fveuw for VeW

Vi+V, €W for Vv,,V, €W |

i.e., W is a gubmodule of V(Z).
Let W be such a vector field system. For 2z € 2, set

W(z) = {V(z): VEW} (3.5)
W(z) is a linear subspace of tﬁ; space of tangent vectors at z, 1Its dimension is called
the rank of W at 2. W is said to be nonsingular if the rank is constant as 2z ranges
over Z. In this paper we will assume that all vector field systems considered have constant
::::t unless specified otherwise. The concept defined next will play a basic role in this
pDefinition. Let W< V be a vector field system. Set

CW) : {VEW: [V,W] =W) (3.6)
C(W) 1is called the Cauchy Characteriatic system associated with W.
Theorem 3.1. C(W) is another vector field system on 2 with the following properties:

CW W (3.7

(C(W) ,C(W)] = C(W) (3.8) |

i.e., C(W) 1is Frobenius integrable as a vector field system

|
\
|
[C(W) ,W] c W : (3.9) i
Proof. Follows from (3.6).

301 |



Definition. A curve t e z(t) in 2 1is called an ordit curve of the vector field system W
ollowing condition is satisfied:

There is a vector field V
v-a‘-:—i-

in W such that t + s(t) 4is an orbit curve of V, i.e., if

$& = viz(e) (3.10)
or, in coordinate terms:

%zE = A(z(t) (3.11)

In this way, a vector field system defines a family of curves on Z. It is this geomstric
property that is the key to the usaefulness of vector field systems in control theory. As we
have seen, control systems are also defined by families of curves, namely solutions of the

control equations:

:(xm, a—-.u(t)) -0 (3.12)

x€R', u€r

Set:
z = R'xR"
z = (x,u)

We can then define a vector field system W on 2 as the smallest submodule of V(2) whose
orbit curves are solutions of the control aquation (3.12).

Let X and X' be manifolds. Let W and W' be nonsingular vector field systems on
X and L', respectively. Let

as X - X'
be a diffeomorphism,

Definition. a is called an ¢quivalénoce from the vector field system W to the vector field
system g' if the following condition is satisfied:

a, (W(x)) = W'(a(x)) (3.13)

for all x € X

i.e., if o maps an orbit curve of W into an orbit curve of W'. Our problem is to describe
numbers attached to vector field systeéms that are invariant under equivalence. We shail cite
(without proofs) some of the theorems from {3] that do provide such invarianta,

Theorem 3.2. Let a: X » X' be a diffeomorphism from X to X' that is an equivalence of
vector ZIeId system W to vector field system W', Let C(W) and C(W') be the Cauchy
characteristic systems of W and W', respectively. Then, the following condition is
satisfied:

a,(C(W) = C(W") (3.14)

i.e., a is an equivalence between the Cauchy characteristic systems of the given vector field
systems,

Definition. For the vector field system W, set:

Wl o= W+ w,w (3.15)

It is called a derived aystem of W.

Tneorem 3.3. Let a be ‘E isomorphism from W to W'. Then, it is an isomorphism of the
derived system W to W'
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¥We can now iterats. Set

whl o= W, ... (3.16)
:R d!fino the successive derived systems of the given vector field system ¥, denoted as
W ,¥4,... We obtain an increasing filtration of submodules of the module of all vector fields
on X3

Wc !1 c !2 € oee (3.17)
Theorem 3.4. We have:

cw < cwl) e cwdy e ... . (3.18)

In words, this says that the Cauchy characteristics of the derived systems also form an
ascending, filtered sequence of submodules of the module of all vector fields on X,

We assume that all the modules (3.17) and (3.18) are of constant rank. Set
r = rank ¢
€ = rank C(W)
1 (3.19)
r, = rank W
¢, = rank C(!z)
and so on,

Theorem 3.5. The sequence of integers

r

[y

r < r
-2 (3.20)

[+

1A

e, £ ¢

€ see

1 2
attached to the vector field system W are numerical equivalence invariants.
Let us now apply these results to control systems in state space form.

4. FEECBACK INVARIANTS FOR CONTROL SYSTEMS IN STATE SPACE FORM

lat us now specialize the taedback.control system to consider those of the foliowing state
apace forms

T = fxu (4.1)
y e R, uwer® .

Theorem 4.1. Let

= {(x,u): x € R®, u € R™)

Let W be the vector field system 2Z generated by the components of the following vector-
valued vector fields on Z:

3 2!
W o= %f(.x,u) =5 (4.2)

Then, the orbit curves on W are precisely the curves t - (x(t),u(t)) that satisfy the
control equation (4.1),

Theorem 4.2. Let dx/dt = f(x,u), and dz/dt = h(z,v) be two feedback control systems with
tne same number of states and controls. Let

- | 2 ]
L] lt(x.u) i’ gﬁl

and
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V_" - h(y:v) g’?l g'v
be the vector field systems assigned to these control systems. Let
T; RMP L M A (4.3)

bea c map of the following form:
T(x,u) + {(y,v) (4.4)
with

y = a(x)
(4.5)
v = g(x,u)

Then T maps the control system {dx/dt = f(x,u)} into the control system
{dy/dt = n(y,v)}, in the sense that it maps solution curves of the first system of ordinary
differential equations into solution curves of the second, if and only if T is an equiva-
lence from the vector field system W to the vector field system W', In particular, the

integers r,rj,...:C,C1se.. assigned by (3.3) to W are invariant under feedback equivalence.

In the case of a linear control system, these integers can be computed in terms of the
aontrollability indices.

Let us now consider the vector field systems associated wi:h a linear, scalar input,
control nystem, i.e., one of the following form:

g% = Ax + bu (4.6)

x €R", u€RrR ber

Associate with that system the following pairs of vector fields on R":

3
vV = Ax-a—x
(4.7)
3
Yo b 3%

Let W be the vector field systems on R" spanned by these two vector fields and 3/3u.
Set:

i
v, = Ad (V)(Vo)

} (4.8)
for i > 0

Theorem 4.3. The following commutation relations hold among these vector fields on R™M:

[V,Vi] = VvV for i =0,1,2,... (4.9)

i+l

[vi,vj] = 0, for i,3j =0,1....

The Jderived system @3 is the vector field system generated by
}%,v,vi; i=i,...,j: (4.10)
Theorem 4.4. If the system (4.6) is controllable, then

= ‘a l -
C(W,)) 15 VoV oYy (4.11)

As I show in [3], Theorem 4.4 is the geometric heart of the sufficient conditions that
Hunt, Meyer, and Su {1,2] provided in their work on feedback linearization, namely:
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Theorem 4.5. Let V,,V; be vector fields on R~ generating a single input, controllable
control system of the following form

dx

a'E Vix) + uVo(x) (‘-12)

Suppose the following condition is satisfied:
The vector field systems

{vo,v =[vvl,...,v =-(vvJ l1} (4.13)

are Frobenius integrable for all j .
Then, the system (4.12) is locally feedback eguivalent to a chosen system.

In the Hunt-Meyer-Su work, the transformation T, which establishes the feedback
equivalence of (4.12) with a linear system,is obtained as a solution of a system of first
order, partial differential equations, and we can only prove existence of such linearizing
transformations locally. A basic question is:

How to piece together such local feedback equivalences
to find a global one?

The answer can be described in terms of cohomology theory [12]. 1Indeed, this is a typical
problem of global differential geometry:

Find conditions for the existence (and computational
feasibility!) of a global solution of a system of
partial differential equations when the conditions for
existence of local solutions are satisfied,

What complicates the analysis of the conditions for existence of a global solution is
that the cohomology theory one must use involves an algebraic object~~the groupoid of feedback
automorphisms of tne linear control systems--that is infinite dimensional, so that standard
topological techniques are not very helpful. It is interesting to note that elementary
particle physicists at the frontiers--in the so-called string theory--are involved with
mathematical monstrocities that are very similar to these! Work on this question is in
progress.
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